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ABSTRACT 
 

As modeling techniques become increasingly popular and effective means for simulating 
real-world phenomena, it becomes increasingly important to enhance or verify our 
confidence in them. Verification and validation techniques are neither as widely used nor 
as formalized as one would expect when applied to simulation models. In this paper, we 
present our methods and results through two very different case studies: a scientific 
model and an economic model. We show that we were able to successively verify the 
simulations and, in turn, identify general guidelines on the best approach to a new 
simulation experiment. We also draw conclusions on effective verification and validation 
techniques and note their applicability. 
 
Keywords: Verification, validation, simulation, natural organic matter, agent-based 
modeling, Ramsey problems 

 
 

INTRODUCTION 
 

The use of simulations to model and study scientific and economic phenomena has the 
potential to be informative; however, the data produced by simulations are most valuable when 
they can be both verified and validated. In simple terms, this means the data produced are 
credible and indiscernible from real-world data. This achievement proves to be very difficult, as 
most real-world systems contain far more constraints and details than computers allow us to 
reasonably model, and this situation is even more difficult for agent-based simulations and 
simulations of social and economic phenomena. This leaves most of our simulations as 
abstractions of real-world phenomena. Their purposes range from helping us to better understand 
natural phenomena to allowing us to predict the behavior of a system. With the varying purposes 
of simulations, verification and validation techniques also vary. The problem is that there is no 
universal verification and validation process that can be applied to all models. The purpose of 
our work is to explore and apply verification and validation techniques to two very different case 
studies. The first case study focuses on a scientific problem: the study of natural organic matter 
(NOM). It has an agent-based backbone and was written first in Pascal then transformed into 
Java with Repast. The second case study involves an economic problem: solving Ramsey 
problems in a stochastic monetary economy. It has a more numerical basis and was written first 
in Matlab and then in C++. We will compare two unrelated simulations that were each written in 
different programming languages and then compare and verify results. In addition, we will 
explore some general guidelines to use as an approach to increasing the confidence of a new 
simulation. 
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The organization of this paper is as follows. The next section outlines what we mean by 
verification and validation and introduces some general methods. The section that follows 
describes various aspects of our first case study, including background, validation, and 
implementation. Then the same is done for our second case study. A conclusion and some 
general guidelines are provided in the section following that. Finally, a discussion of future work 
and references conclude the paper. 
 
 

VERIFICATION AND VALIDATION PROCESS 
 

Simply put, model verification is getting the model right. This means that the code 
generating the phenomenon being modeled correctly matches the abstract model. Model 
validation is getting the right model, meaning that the correct abstract model was chosen and 
accurately represents the real-world phenomenon. It is important to note that verification and 
validation are key parts of the model development process. Moreover, they must be performed in 
tandem for the best results. Effective verification and validation of a model will increase the 
confidence in the model, making it more valuable. An adapted version of Sargent’s (1998) and 
Huang’s (2005) verification and validation process diagram is shown in Figure 1. It has been 
modified for agent-based scientific and economic simulations. 

 
While there have been many verification and validation studies performed for general 

engineering purposes, verification and validation studies for agent-based and social science 
simulations are lacking. Some of this can be attributed to agent-based modeling not being as 
mature as engineering modeling. The point is that we can adapt what has already been done as 
well as create new tools to fit the needs of agent-based modeling. 

 
 

 

FIGURE 1  A verification and validation process 
for scientific and economic simulations 
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Balci (1998) outlined 15 general simulation principles, developed primarily for 
engineering or management science applications. His principles help engineers and researchers 
better understand the verification and validation they are performing. This understanding is 
directly related to model success. A few of his principles that are relevant to scientific and 
economic modeling are presented next. 

 
1. The outcome of the simulation model verification, validation, and testing 

should not be considered as a binary variable where the model outcome is 
absolutely correct or incorrect. It is important to realize that models, being 
abstractions and not absolute representations of phenomena, can never totally 
and exactly match a system. 

 
2. Complete simulation model testing is not possible. As we cannot test all 

possible inputs and parameters for a system, we must choose the most 
appropriate ones. 

 
3. Simulation model verification, validation, and testing must be planned and 

documented. Successful planning and documentation are critical and involve 
the work of many people throughout the lifetime of the system. 

 
4. Successfully testing each submodel (module) does not imply overall model 

credibility. Simply because the modules work well independently does not 
mean they will work cohesively in a system. 

 
When verification and validation of a model are being performed, it is good to begin by 

identifying the key principles and techniques to be used for that model. Moreover, planning the 
verification and validation process, as outlined previously, makes the process more complete and 
effective. Utilizing Balci’s (1998) principles and techniques is a great starting point; from there, 
model confidence can be improved with further subjective and quantitative methods. We next 
outline a general verification and validation process that can be adapted to fit many agent-based, 
social, and economic models. A hierarchy of such methods is shown in Figure 2. 

 
 
Subjective Methods 
 
 Subjective methods largely rely on the judgment of domain experts. They are often used 
for initial quick-and-dirty validation, but they can also be more formalized. Whatever the 
purpose, subjective methods typically require less effort than quantitative methods, can detect 
flaws early in the simulation process, and are often the only applicable verification and 
validation methods for exploratory simulation studies. We next describe some of the subjective 
techniques proposed by Balci (1998) that may be applicable to economic and agent-based 
scientific simulations. His techniques are widely used in validating the models of manufacturing, 
engineering, and business processes. The following has been adapted from Xiang et al. (2005). 
 

1. Face validation. This preliminary approach to validation involves asking 
domain experts whether the model behaves reasonably and is sufficiently 
accurate. This is often achieved by evaluating the output or observing a 
visualization, if applicable. 
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FIGURE 2  Verification and validation 
methods 

 
 
2. Turing test. This technique is performed by giving domain experts model 

outputs and real-world outputs and asking them to discriminate them. 
 

3. Internal validity. This involves comparing the results of several replications of 
a simulation, with the only difference being the random seed. Inconsistencies 
in the results question the validity of some aspect of the model. 

 
4. Tracing. Here, the behavior of entities in the model is followed to determine if 

the logic of the model is correct. 
 
5. Black-box testing. This technique involves how accurately the model 

transforms the input to output in a system. 
 
 
Quantitative Methods 
 
 Incorporating quantitative, or statistical, methods into the validation process can 
significantly increase the credibility of the model. Model validation is conducted by using 
statistical techniques to compare the model output data with the corresponding system or with 
the output data of other models run with the same input data. 
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The first step to starting quantitative analysis is to determine a set of appropriate output 
measures that can answer user questions (Xiang et al. 2005). After a set of output measures has 
been collected, various statistical techniques can be applied to complete the validation process. 
Time series, means, variances, and aggregations of each output measure can be presented as a set 
of graphs for model development, face validation, and Turing tests. Confidence intervals and 
hypothesis tests can be used in the comparison of parameters, distributions, and time series of 
output data for each set of experimental conditions. These statistical tests can help model 
developers determine if the model’s behavior is acceptably accurate. 

 
The cost of the validation process increases exponentially with the confidence range for a 

model. There is no single validation approach applicable to all computational models. Choosing 
the appropriate statistical test techniques and measures of a system is important when conducting 
a validation process. It is important to note that there is no correct set of statistical tests to use for 
every simulation; the best results are achieved when tests are carefully chosen according to the 
model. Some of Balci’s (1998) more quantitative techniques that are relevant to our case studies 
are next described. 
 

1. Docking. Docking, or model-to-model comparison or alignment, is used when 
another model that models the same phenomenon exists or can be created. 
Docking helps to determine whether two or more models can produce the 
same results (Axtell et al. 1996). The main idea is that model confidence is 
significantly improved when two or more models produce the same effective 
results, particularly if the models were developed independently and with 
different techniques. In addition, the output from a model can be validated 
against real-world data. 

 
2. Historical data validation. When historical data exist or can be collected, 

these data can be used to build the model, and the remaining data can then 
used to determine if the model behaves as the system does. 

 
3. Sensitivity analysis/parameter variability. Here, one changes the input values 

and the internal parameters of a model to determine the effect on the model 
and its output. Ideally, the relationship in the real-world system should be 
mimicked in the model. Sensitive parameters that cause significant changes in 
the model’s behavior should be made sufficiently accurate before this model 
is used. 

 
4. Predictive validation. This technique is used to compare the model’s 

prediction with actual system behavior. The system data may come from an 
operational system or specific experiments, such as from a laboratory or from 
field experiments. 

 
 

CASE STUDY I: AN AGENT-BASED SCIENTIFIC MODEL 
 

NOM is a heterogeneous mixture of molecules. NOM plays a crucial role in the evolution 
of soils, transport of pollutants, and carbon cycle (Cabaniss et al. 2005; Xiang et al. 2005). Its 
evolution is an important research area in a number of disciplines. NOM is complex; it is made 
up of molecules with varying molecular weights, reactivity levels, and functional groups. This 
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makes it difficult to model. Performing chemical experiments with NOM is difficult and time-
consuming because of its complexity and because of our limited knowledge of its inner 
workings. The ability to effectively predict NOM behavior as it evolves over space and time 
would be very valuable to scientists and an accomplishment in the modeling discipline. 
 
 
Conceptual Model 
 

The NOM conceptual model was based on the work of a chemist working at the 
University of New Mexico (Cabaniss et al. 2005). He generated his model from extensive 
observation and experimentation in the laboratory. His basic model outlined the use of the 
precursor molecules cellulose, lignin, and protein (among others) to be used in a controlled 
environment where parameters such as light intensity, temperature, and density could be varied. 
A more detailed description of our model follows and has been adapted from Xiang et al. (2005). 

 
 

Agents 
 
Our agents are molecules. Each molecule is a representation of its underlying elemental 

formula, meaning the number of C, H, O, N, S, and P atoms present. This gives rise to a 
molecular weight for each molecule. Molecules also contain a functional group count, such as 
the number of alcohol or ester groups present. 

 
 

Behavior 
 
In our environment, agents can move around a grid, interacting with other molecules and 

their environment. Molecules undergo chemical reactions on the basis of specific probabilities. 
Reactions can result in structural changes in the molecule, such as the addition of functional 
groups. They can also generate new molecules from predecessor molecules, and the predecessor 
molecules may leave the system. Twelve types of chemical reactions, including first- and 
second-order chemical reactions, are modeled as described in Table 1. The categories of 
reactions are as follows: 

 
1. First-order reactions with a split. The predecessor molecule A is split into 

two successor molecules B and C. Molecule B occupies the position of 
molecule A, while one of the empty cells closest to molecule B is filled with 
molecule C. 

 
2. First-order reactions without a split. The transformation only changes the 

structure of the predecessor molecule A. 
 
3. First-order reactions with the disappearance of a molecule. The predecessor 

molecule A disappears from the system. 
 
4. Second-order reactions. Two molecules A and B are combined to form a new 

molecule C. Molecule C replaces molecule A, and molecule B is removed 
from the system. 
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TABLE 1  Chemical reactions 

 
Name 

 
Type 

  
Ester condensation Second order 
Ester hydrolysis First order with a split 
Amide hydrolysis First order with a split 
Microbial uptake First order with the disappearance of a molecule 
Dehydration First order with a split 
Strong C = C oxidation First order with a split (50% of the time) 
Mild C = C oxidation First order without a split 
Alcohol C-O-H oxidation First order without a split 
Aldehyde C =O oxidation First order without a split 
Decarboxylation First order without a split 
Hydration First order without a split 
Aldol condensation Second order 

 
 
Space 

 
In the NOM model, the agents are associated with a location in two-dimensional (2D) 

geometrical space and can move around their environment. Each cell on the grid can host 
multiple molecules up to a certain threshold. 

 
 

Reaction Probabilities 
 
The probability for each reaction type is expressed in terms of intrinsic and extrinsic 

factors. Intrinsic factors are derived from the molecular structure, including the number of 
functional groups and many other structural factors. Extrinsic factors arise from the environment 
and include concentrations of inorganic chemical species, light intensity, availability of surfaces, 
presence of microorganisms, presence and concentration of extracellular enzymes, and presence 
and reactivity of other NOM molecules. The intrinsic and extrinsic factors are combined in 
probabilistic functions. 

 
 

Molecular Properties 
 
The reactivity of the resulting NOM over time can be predicted on the basis of the 

distributions of molecular properties, which are calculated from the elemental composition and 
functional group data. They represent a measurable quantity that can be used as a predictor for 
environmental function and are useful for the calibration and verification of our conceptual 
model and simulation. 

 
 

Simulation Process 
 
The conceptual model is a stochastic synthesis model of NOM evolution, meaning that 

the state of the system is represented by a set of values with a certain probability distribution, 
such that the evolution of the system depends on a series of probabilistic discrete events. At each 
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time-step, for each molecule, a uniform random number is generated. This number determines 
whether a reaction will occur, and if one does occur, its reaction type. After a reaction takes 
place, the attributes for the current molecule are updated, and the reaction probabilities are 
recalculated. The molecule structure is changed to alter the outcome of the reaction, and a new 
probability table entry is added for newly formed molecules, if there are any. 
 
 
Implementations 
 

The NOM conceptual model was initially implemented in Pascal, resulting in a program 
for Windows called AlphaStep. Our implementation is coded by using Java (Sun JDK 1.4.2) and 
the Repast toolkit. Repast is an agent-based simulation toolkit written in Java. It contains a 
control panel to control and manipulate the model and has rich visualization capabilities. We 
chose Java for our model because we also incorporate a Web-based front end to the system 
where users can create and submit simulations, as well as view graphical results. 
 

 
Validation 
 
 We followed the general technique previously outlined when validating the NOM model. 
We began with subjective analysis and then proceeded with quantitative analysis. 
 
 
Subjective Analysis 
 

The validation of the NOM model began with face validation of the conceptual model by 
domain experts. They evaluated the underlying mechanisms and properties and drew their 
conclusions. After initial face validation was achieved, coding of the agent-based simulation took 
place. In this step, verification methods, such as code walk-through, trace analysis, input-output 
testing, pattern testing, boundary testing, code debugging, and calculation verification, were used 
to verify the correctness of the simulation. Another useful technique used for simulation 
validation is visualization (Grimm 2002). Visualization is often used in conjunction with face 
validation. A snapshot of an animated visualization of the flow of molecules through a soil 
column is shown in Figure 3. A corresponding animated graph shows how the molecular weight 
distribution shifts with time, initially favoring lower-weight molecules and gradually shifting to 
larger molecular weights as the simulated time passes. These same behaviors were observed in 
the laboratory, which increases confidence in the simulation. 

 
A simulation model that uses random number generators must have statistical integrity in 

that independent simulations with the same input data should have similar results. This is also 
known as internal validity. If the simulation model produced large variabilities because of the 
random seeds, there would be a considerable problem with it. To test this, we performed 450 
simulations with our NOM simulator, each with a different random seed. We chose the total 
number of molecules in the system after the simulation had completed as our point for 
comparison. We found that our simulations produced the expected normal curve upon analysis of 
the data. Figure 4 shows the histogram for the data. By verifying the independency of the random 
seeds in the NOM simulator, we were able to conclude that it is statistically robust in terms of 
repeatability. Further statistical analysis needs to be performed to verify how reliably our 
simulator conforms to a normal distribution. 
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FIGURE 3  NOM visualization 
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FIGURE 4  Histogram showing distribution 
after 1,000 simulated hours 

 
 
Quantitative Analysis 

 
Both our NOM model and the AlphaStep model rely on the same basic conceptual model. 

However, there are a few inherent differences. First, AlphaStep has no sense of space. Instead, its 
agents are described as parts of a “well-stirred soup,” each equally likely to react with any other 
molecule. Another key difference is the programming language used in each simulation. We 
summarize the main differences between implementations in Table 2. 
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TABLE 2  Implementation differences 

 
Feature 

 
AlphaStep 

 
NOM 

   
Programming language Pascal Java 
Platform Windows Linux 
Running mode Standalone Web based, standalone 
Simulation packages None Repast 
Initial population Actual number of molecules Percentage distribution of molecules 
Animation None Yes 
Spatial representation None 2D grid 
Second-order reaction Randomly pick one from molecule list Choose nearest neighbor 
First-order reaction with split Add to molecule list Find empty cell nearby 
 
 

To dock these stochastic simulations, we performed 25 replications, each with different 
random seeds, for both implementations given effectively the same initial conditions. Among the 
many molecular variables, we chose number of molecules, MWn (number-average molecular 
weight), MWw (weight-average molecular weight), carbon mass, and carbon percentages as 
metrics for comparison. We took ensemble averages from 25 replications and compared data 
points over time. These comparisons are shown in Figure 5. As one can see, visual agreement 
looks very good; however, statistical testing must be performed to ensure that differences 
between the models are not significant. 
 
 

CASE STUDY II: AN EQUATION-BASED ECONOMIC MODEL 
 

Ramsey problems are concerned with setting specific economic variables — money 
growth and tax rate — to generate the best social welfare for a given economy (Cosimano and 
Gapen 2005). In our model, nonlinear projection methods are used to solve these problems. The 
goal is to calculate the real or nominal interest rate for a given economy under the optimal 
money growth and tax rates. Our model creates a set of residual equations, using bivariate 
Chebyshev polynomials. 
 

The simulation was initially written for Matlab. It effectively takes advantage of Matlab’s 
built-in functions and capabilities, but execution is slow. The current model works off of four 
equations and on moderate-sized matrices. The next iteration of the model would include a fifth 
equation and much larger matrices, making execution in Matlab unpractical. Once the model was 
verified and validated in Matlab, we converted the code to C++ to make it execute faster. 
 
 
Conceptual Model and Implementation Differences 
 

Matlab is a matrix laboratory, meaning a rich interactive programming environment that 
supports many data types best suited for numerical analysis. Matlab, being a high-level language, 
is very user friendly and has many built-in functions and display options. Matlab is also useful 
for prototyping. It is, however, inherently slow; it is essentially a software package written in C, 
and simulations written in Matlab are interpreted, resulting in slow execution. C++, on the other 
hand, is an object-oriented, lower-level language. Its standard template library incorporates many  
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FIGURE 5  Comparisons between AlphaStep and NOM 
 
 
desirable functions, and it is relatively simple to code. Because C++ has an efficient compiler 
and is a lower-level language, simulations written directly in C++ run much faster than 
equivalent simulations written in Matlab. 
 

Converting the simulation from Matlab to C++ was much more difficult than expected. In 
Matlab, variables are not declared as they are in C++. Instead, most variables are assumed to be 
arrays. These arrays can contain real numbers, complex numbers, or even other arrays of real 
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numbers, among other things. This creates a big problem in C++, as variables must be declared 
with a data type. For example, the variable array1 could represent an array of real numbers at 
one point in a Matlab program and an array of complex numbers at another point. The idea is 
that the variable array1 is, in essence, overloaded to handle many data types. In C++, functions 
operate and are called differently depending on the type of data passed to them. Overcoming this 
step was pivotal to porting the code. 
 

Another main difficulty in going from Matlab to C++ was emulating Matlab’s built-in 
functions. The majority of the Matlab functions used in this simulation are part of the LAPACK, 
or linear algebra package, and include functions such as taking the normal of a matrix or vector, 
inverting a matrix, conditioning a matrix, etc. Not only are these not inherently included in C++, 
but they are again overloaded in the sense that you can pass Matlab’s max function a vector, a 
matrix, or a simple set of numbers, and it will give the proper result. While it is possible to call 
Matlab from within C++ to make use of such functions, the desire of this project was to have 
everything run in C++ for maximum speed. Determining the inner workings of Matlab’s many 
functions and implementing approximations of them in C++ proved difficult and time-
consuming. In the end, the core of the simulations did the same thing, but with an inherently 
different implementation, requiring a rigorous verification and validation effort. 
 
 
Performance 
 

Running time for runs of 5, 50, and 500 iterations of the simulation can be found in 
Table 3 and Figure 6. As evidenced, the speedup is significant, or approximately 30 times faster 
in C++. 
 
 
Validation 
 
 Validating the economic model was a little different than validating the scientific model 
described in the first case study. The validation process helped us identify some problems with 
the C++ implementation, so we were limited in the amount of quantitative analysis that we could 
perform. In this case, validation served the purpose of identifying what was wrong with our 
implementation. 
 
 

TABLE 3  Running time for Matlab and C++ implementations 

  
5 Iterations 

 
50 Iterations 

 
500 Iterations 

    
Matlab 58 seconds 568 seconds 8,872 seconds 
C++ 2 seconds 17 seconds 176 seconds 
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FIGURE 6  Performance comparison of Matlab 
and C++ implementations 

 
 
Subjective Analysis 

 
 Validation was performed throughout the code porting process. It was important to verify 
that the control flow was similar in both versions and that the data were handled in the same 
manner. To accomplish this, a sort of tracing was performed in which the behavior of certain 
entities in the models, such as the Lagrange multiplier, was followed in both versions of the 
model. This helped validate the C++ model against the Matlab model and also helped us identify 
where our code was going wrong. Table 4 shows some sample results from our code. The steady-
state data are taken from Cosimano and Gapen (2004). Our results show that the programs 
produced similar results for the more important variables. However, the variable representing the 
real interest rate shows a significant disparity. Tracing helped us discover the likely cause: that 
the matrix inversion function in the C++ code is not as robust as it is in the Matlab version. 
When presented to a domain expert, face validity was achieved for most of the values shown in 
Table 4. Because the core of the simulation is equation based, output values should be consistent 
through both of our versions. This correlates to us performing more of a “face verification” 
technique in judging the correctness of our results. 

 
 

Quantitative Analysis 
 

Simple checking, such as outputting key variables as the programs were running, helped 
validate that the calculations were being done correctly. In essence, the C++ version of the code 
was validated against the Matlab code in the docking process. In addition, the labor and 
Lagrange multiplier values were docked against the steady-state data, further increasing 
confidence. The face validity checking helped identify some errors in our code, while docking 
helped us isolate and verify the problem. More verification and validation techniques need to be 
performed for this case study. 
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TABLE 4  Face verification 

 
 

Model 

 
Lagrange 
Multiplier Labor 

Money 
Growth Tax Rate Cash Good Credit Good 

 
Real Interest 

Rate 
        
Matlab 0.138 0.309 –0.009 0.188 0.486 0.621 0.009 
C++ 0.123 0.309 –0.009 0.188 0.486 0.621 –0.659 
Steady state 0.138 0.309 –0.009 0.188 0.485 0.620 0.009 

 
 

CONCLUSION 
 
 In this paper, we have shown how we performed verification and validation through 
docking on two very different models. We have shown that similar techniques can be applied to 
the models, regardless of the underlying model structure. 
 
 
General Guidelines 
 
 When designing a simulation, it is important to have a concise abstract representation of 
the model in mind. This abstract representation will help lead to effective programming and 
implementation choices. On the basis of this, one can choose the correct environment or 
language for the model. As we have shown here, different environments and languages have 
their own distinct advantages and disadvantages. It is upon these that our programming decisions 
must be based. It is important to note that the entire lifetime of the model must be considered 
when making these decisions. The choices must also be made with consideration given to the 
verification and validation techniques that will be applied to the model. These verification and 
validation techniques must also be thought out in advance. We have listed some general ratings 
for the techniques used in this paper in Table 5. Possible ratings are fair, good, very good, and 
excellent. It is important to note that the ratings listed are specific to our case studies. 
 
 

TABLE 5  General ratings for our case studies 

 
 

Agent-based Equation-based 
   
Face validation/verification Very good Very good 
Turing test Very good Good 
Internal validity Very good N/A 
Tracing Fair Excellent 
Black-box testing Good Good 
Model-to-model comparison Very good Very good 
Historical data verification Very good Very good 
Sensitivity analysis Good Good 
Prediction validation Good Fair 
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FUTURE WORK 
 

In future studies, it is important that we use and develop more stringent and formalized 
verification and validation testing methods. Doing this on top of a strong statistical foundation 
would further increase confidence in the models. Gathering empirical data and generating 
statistical data would also serve as a better point of comparison when judging our models against 
real-world systems. In addition, performing some goodness-of-fit tests, such as the chi-square 
test and the Kolmogorov-Smirnoff test, as well as performing the ANOVA test would help us 
determine the validity of the models. “Invalidating” our models, meaning performing tests 
specifically designed to invalidate them, also has the potential to eliminate some of our 
“validation bias” (Macal and North 2005). Finally, improving the helper functions in the C++ 
version of the second case study would both speed up and strengthen the results for that model. It 
would also allow us to do a more in-depth verification and validation study. 
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